perm filename COND.PRF[226,JMC] blob
sn#005399 filedate 1972-06-25 generic text, type T, neo UTF8
AXIOM COND1
(∀ P) (∀ X) (∀ Y) (P⊃IF P THEN X ELSE Y=X)
AXIOM COND2
(∀ P) (∀ X) (∀ Y) (¬ P⊃IF P THEN X ELSE Y=Y)
AXIOM TRUE1
TRUE
AXIOM TRUE2
(∀ P) (P=TRUE≡P)
AXIOM REFLEX
(∀ X) (X=X)
AXIOM SYMEQ
(∀ X) (∀ Y) (X=Y⊃Y=X)
AXIOM TRANSEQ
(∀ X) (∀ Y) (∀ Z) (X=Y∧Y=Z⊃X=Z)
AXIOM NOTEQ
(∀ X) (∀ Y) (XNEQY≡¬ (X=Y))
PROOF ONE
1: IF P THEN IF P THEN A ELSE B ELSE C=IF P THEN IF P THEN A
ELSE B ELSE C BY AXIOM(REFLEX,IF P THEN IF P THEN A ELSE B ELSE C)
2: P⊃IF P THEN A ELSE B=A BY AXIOM(COND1,P,A,B)
3: P BY ASSUMPTION
4: IF P THEN A ELSE B=A BY MP(2,3) ASSUMING (3)
5: IF P THEN IF P THEN A ELSE B ELSE C=IF P THEN A ELSE C BY
REPL(1,4,2) ASSUMING (3)
6: ¬ P⊃IF P THEN A ELSE C=C BY AXIOM(COND2,P,A,C)
7: ¬ P⊃IF P THEN IF P THEN A ELSE B ELSE C=C BY AXIOM(COND2,P,IF
P THEN A ELSE B,C)
8: ¬ P BY ASSUMPTION
9: IF P THEN A ELSE C=C BY MP(6,8) ASSUMING (8)
10: IF P THEN IF P THEN A ELSE B ELSE C=C BY MP(7,8) ASSUMING (8)~
11: IF P THEN IF P THEN A ELSE B ELSE C=IF P THEN A ELSE C BY
REPR(10,9,2) ASSUMING (8)
12: P∨¬ P BY TAUT (P∨¬ P)
13: P⊃IF P THEN IF P THEN A ELSE B ELSE C=IF P THEN A ELSE C BY
DED(5,3)
14: ¬ P⊃IF P THEN IF P THEN A ELSE B ELSE C=IF P THEN A ELSE C BY~
DED(11,8)
15: IF P THEN IF P THEN A ELSE B ELSE C=IF P THEN A ELSE C BY OE(
12,13,14)
16: (∀ B) (∀ A) (∀ P) (IF P THEN IF P THEN A ELSE B ELSE C=IF P
THEN A ELSE C) BY UG(15,P,A,B)